

1. SPDT, SP4T AND HIGH POWER SPDT SWITCH PERFORMANCE

1.1 S-parameter Characterization

S-parameter characterization is used to verify performance parameters such as insertion loss, isolation and delay differences between paths. The S-parameter measurements were made using an HP8510 network analyzer. Tables 1.1-1 and 1.1-2 provide worst case results, over the frequency band, for the SPDT and SP4T switches respectively.

Table 1.1-1: SPDT S-parameter Characterization

AMC P/N: SWN-RRA-2DT, S/N: 2MS703161

Party (dB) Input Output (dB)						
Specification	Path		loosit	Output	nointicet (Bb)	The same of the sa
J1-J2 1.5 18.6 19.4 25	J1-J2	1.5	18.6	19.4	80	ackepacifies
J1-J3 1.4 16.5 18.8 >85 222 222 222	J1-J3	1.4				

Table 1.1-2: SP4T S-parameter Characterization

AMC P/N: MSN-4DT, S/N: 2MS70305

Path	Reservances (GB)	input	eomolii:	Aciation (dB)	Deby
J1-J3	1.6	21.7	21.1	80 >85	- NOCOCOCIONA
J1-J4 J1-J6	1.7 1.5	17.7	14.7 22.9	>85 >85	248 247
J1-J7	1.6	28.0	23.2	>85	247 246

1.2 Pulse Response

Pulse response measurements were performed to ensure the switch would not distort the input RF pulse. The test set-up is shown in Figure 1.2-1. Table 1.2-1 contains the results for the SPDT switch.

Figure 1.2-1: Pulse Response Test Set-up

Table 1.2-1: SPDT Switch Pulse Response

AMC P/N: SWN-RRA-2DT, S/N: 2MS703161

3 -						
	120 µs	1.2 ms	10	9.0	11.1	
	10 us	100 µs	10	9.2	13.0	
	1 µs	10 us	10	9.2	12.2	
	500 ns	5 μ\$	10	9.0	11.8	-
	200 ns	2 µs	10	8.9	12.1	

1.3 Residual Amplitude and Phase Noise

All of the AM and PM noise measurements have been made using a HP3048A test set.

13016624938:# 4/15

Table 1.3-1: SPDT Residual Phase Noise

AMC P/N: SWN-RRA-207, S/N: 2MS703161

	The state of the s
-132	-131
-142	-140
-150	-150
-160	-160
-167 -170	-167
-170	-170
-167	- <u>168</u> - <u>167</u>
	-:01

Table 1.3-2: SPDT Residual Amplitude Noisa

COM DEV P/N: 123065-1

=======================================		A Maria Trail	ar or menge	
Citaet Fraquancy	Switch SAL 2N8794195 (dBc/Hz)		Switch:	\$witch SIN: 2M3704189
10 Hz 1	-114	-110	-110	(BCH)
	-122	-120	-120	- <u>110</u> -118
	-140	-140	-140	-135
	-150	-152	·152	-147
	-157 163	-157	-157	-155
	-163 -163	-164 -163	-163	-162
		-103	-163	-163

Table 1.3-3: High Power SPDT Residual Amplitude Noise

COM DEV P/N: 124043-1

		WOOMEN A.
C Office of		
	100	
	-120	-120
	-128	-127
	-141	-142
	-152	-153
	-157	-157
	-163	-163
	-162	-162

1.4 Conducted Susceptibility

Conducted susceptibility measurements provide an indication of the components tolerance to noise on its supply or control lines. Performance is measured by monitoring the spurious levels with the AM/PM noise measurement test set for various frequencies and amplitudes of noise injected. The phase noise test set (HP3048A) is used (due to the dynamic range requirements of the specification) for all measurements up to 40 MHz offset from the carrier frequency. Above 40 MHz offset, measurements are made using a HP8563E spectrum analyzer. Two possible set ups can be used for measuring the spurious with the AM/PM test set. AM set up or PM set up. The AM set up will yield the worst case results since the PM set up provides some suppression of AM signals. The following tables provide results summaries.

Table 1.4-1: SPDT Switch Conducted Susceptibility (PM Noise Set-up)

AMC PIN: SWN-RRA-2DT, SIN: 2MS703161

	<u> </u>	-124	•
	-154	-123	-
到10.15年的10.15年	-116	-	-118
	•	•	-170
		•	-165
は、これには、これが、これには、これには、これには、これには、これには、これには、これには、これには	-120	•	-166

The following results were obtained using input power levels of + 15 dBm into the switches. This was necessary to achieve a + 10 dBm level at the detector input. The specification calls for the measurements to be made at - 3 dBm for the low power SPDT, and + 29.5 dBm for the high power SPDT.

Table 1.4-2: SPDT Switch Conducted Susceptibility (AM Noise Sat-up)

COM DEV P/N: 123065-1, S/N: 2MS704203

			- Charles
	< -115	-73	<-125
	-124	-74	. 120
	-123	-73	-
	-121	-80	<-150
	-121	-85	
	-120	-89	<-150
	-126	-128	•
mean, it is the second of the second	-120	-123	•

Table 1.4-3: High Power SPDT Switch Conducted Susceptibility (AM Noise Set-up)

COM DEV P/N: 124043-1, S/N: 2MS704240

		という かんしょう とうしょう	Company of the Compan
			The same of the sa
	-73	-85	< -130
	-73	-85	-130
	-74	-87	-
	-78	-102	-
	-82 -86	-107	•
	-118	-110 -126	< -150
器正正理器部位表面	< -125	<-125	-

1.5 Conducted Emissions

As discussed in the previous section, the conducted emissions are important in determining the effect that RF pulse reaction of a component will have on the overall unit performance. The conducted emissions output will generate noise on power supply and control lines and consequently could cause spurious outputs. By measuring the conducted emissions in the frequency and time domains for various input RF pulses, the effective noise level can be calculated. For the switches, only the frequency domain information is provided since there were no observable current spikes in the time domain monitoring. The conducted emissions are measured using a current probe and the HP8563E spectrum analyzer. The following tables provide a summary of the conducted emissions performance under pulsed RF operating conditions.

Table 1.5-1: SPDT Conducted Emissions: Frequency Domain

COM DEV P/N: 124065-1, S/N: 2MS704203

		CORPUSACE DESIGNATION OF THE PROPERTY OF THE P	TARTUMAN DI BARAN
100	2.9	15.7 kHz @ -86 dBm 102.9 kHz @ -100 dBm 714 kHz @ -82 dBm 13 MHz @ -100 dBm	15.9 kHz @ -89 dBm 102.9 kHz @ -99 dBm 714 kHz @ -82 dBm 13 MHz @ -99 dBm 14 MHz @ -103 dBm
100	1.0	15.9 kHz @ -90 dBm 31.8 kHz @ -96 dBm 714 kHz @ -82 dBm 13.1 MHz @ -99 dBm	16 kHz @ -87 dBm 32 kHz @ -95 dBm 100 kHz @ -106 dBm 714 kHz @ -80 dBm 13.2 MHz @ -101 dBm 14.6 MHz @ -103 dBm

Table 1.5-1: High Power SPDT Conducted Emissions: Frequency Domain (Pulsed)

COM DEV P/N: 123043-1, S/N: 2MS704240

			THE PROPERTY OF THE PARTY OF TH
0.5	THE PERSON NAMED IN COLUMN 1		
U. 3	1.0	500 Hz @ < -103 dBm 714 kHz @ -85 dBm 13 MHz @ -94 dBm 39.9 MHz @ -75 dBm	184 Hz @ -88 dBm 304 Hz @ -95 dEm 500 Hz @ -104 dEm 786 kHz @ -87 dEm 13 MHz @ -100 dBm 14.6 MHz @ -102 dBm
0.5	120	500 Hz @ -101 dBm	22 MHz @ -98 dBm
		180 Hz @ -91 dBm	
		299 Hz @ -95 dBm	
100	2.9	100 kHz @ -87 dBm 786 kHz @ -82 dBm 13 MHz @ -96 dBm	100 kHz @ -96 dBm 786 kHz @ -85 dBm 1.79 MHz @ -77 dBm
100	1.0	100 kHz @ -94 dBm 429 kHz @ -76 dBm 13 MHz @ -94 dBm	13.3 MHz @ -101 dBn

Additionally, the high power SPDT was monitored for conducted emissions output under CW conditions. The following table contains a summary of the results.

Table 1.5-1: High Power SPDT Conducted Emissions: Fraquency Domain (CW)

COM DEV P/N: 123043-1, S/N: 2M5704240

	Chrispile Initiation
786 KHz @ -89 dBm	857 kHz @ -91 dBm
13 MHz @ -96 dBm	1.86 MHz @ -87 dBm
30 MHz @ -92 dBm	13.1 MHz @ -99 dBm